Optimización de trayectorias bajo incertidumbre con Python

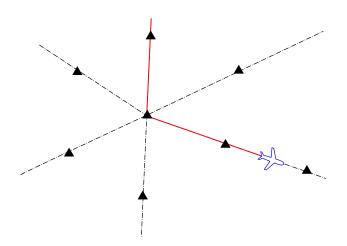
Daniel González Arribas

Department of Bioengineering and Aerospace Engineering
Universidad Carlos III de Madrid

Python Madrid Meetup - Junio 2016

Índice

- Introducción
 - ATM: pasado y futuro
 - Incertidumbre en TBO
- Metodología
 - Control óptimo
 - EPS
 - Optimización miembro a miembro
 - Optimización robusta
- Python
 - Librerías
- 4 Conclusiones
 - Comentarios finales

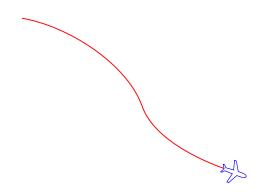

Table of contents

- Introducción
 - ATM: pasado y futuro
 - Incertidumbre en TBO
- 2 Metodología
 - Control óptimo
 - EPS
 - Optimización miembro a miembro
 - Optimización robusta
- 3 Python
 - Librerías
- Conclusiones
 - Comentarios finales

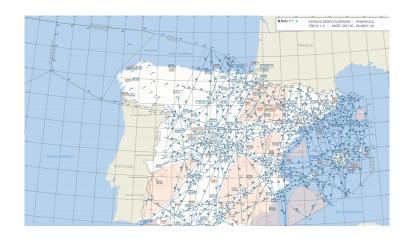
ATM: pasado y futuro

Navegación aérea hasta hoy

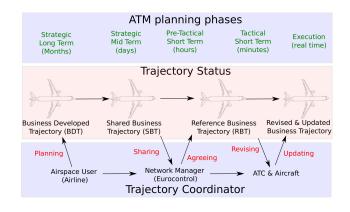
SESAR / NextGEN

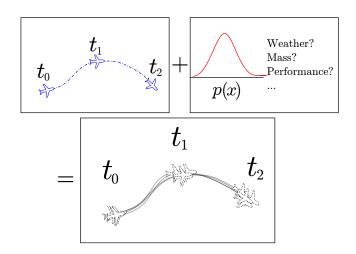

• 1999: SES (Single European Sky)

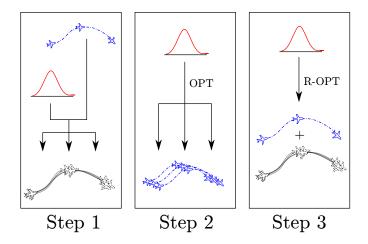
2004: NextGen


2008: SES II

2008: SESAR


Trajectory-Based Operations


De espacio aéreo fijo a free routing


Proceso colaborativo en TBO

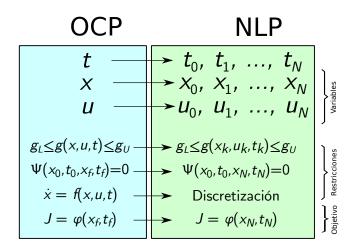
Impacto de la incertidumbre

Hacia la planificación robusta

Table of contents

- Introducción
 - ATM: pasado y futuro
 - Incertidumbre en TBO
- Metodología
 - Control óptimo
 - EPS
 - Optimización miembro a miembro
 - Optimización robusta
- 3 Python
 - Librerías
- 4 Conclusiones
 - Comentarios finales

Control óptimo: el problema


- Ec. diferenciales: $\dot{x} = f(x, u, t)$
- Restricciones: $g_L \leq g(x, u, t) \leq g_U$
- Objetivo: min $J = \Phi(x_f, t_f) + \int_{t_0}^{t_f} \mathcal{L}(x, u, t) dt$
- Condiciones de frontera: $\Psi(x_0, t_0, x_f, t_f) = 0$

Control óptimo: métodos numéricos

- Programación dinámica: solucionar una EDP complicada (Hamilton-Jacobi-Bellman)
- Métodos indirectos: solucionar un problema de valores de frontera (condiciones necesarias: Pontryagin)
- Métodos directos: solucionar un problema de optimización no-lineal

Control óptimo: métodos directos

¿Por qué usar pronósticos no-deterministas?

Las previsiones meteorológicas tienen incertidumbre:

- Incertidumbre en las condiciones iniciales
- Parametrizaciones / modelización
- Error numérico y limitaciones computacionales

Amplificado por una dinámica compleja y caótica

Una predicción determinista única contiene información limitada

¿Por qué usar pronósticos no-deterministas?

Las previsiones meteorológicas tienen incertidumbre:

- Incertidumbre en las condiciones iniciales
- Parametrizaciones / modelización
- Error numérico y limitaciones computacionales

Amplificado por una dinámica compleja y caótica

Una predicción determinista única contiene información limitada

¿Por qué usar pronósticos no-deterministas?

Las previsiones meteorológicas tienen incertidumbre:

- Incertidumbre en las condiciones iniciales
- Parametrizaciones / modelización
- Error numérico y limitaciones computacionales

Amplificado por una dinámica compleja y caótica

Una predicción determinista única contiene información limitada

Ensemble Prediction Systems (EPS)

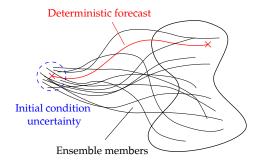


Figura: Propagación de la incertidumbre

Ejemplo

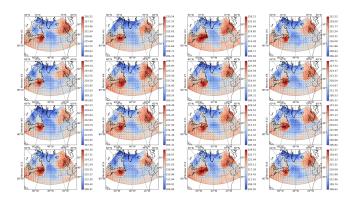
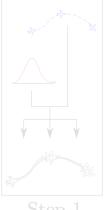
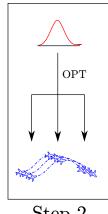
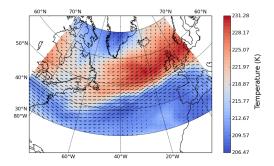




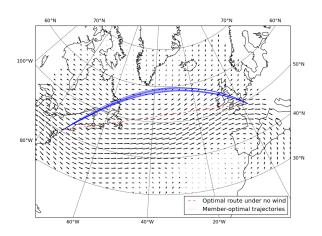
Figura: PEARP ensemble a 250 hPa

Optimización miembro a miembro

Optimización por miembro

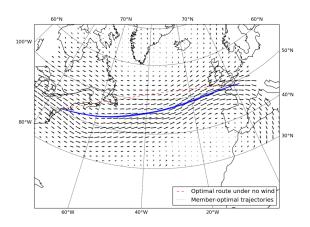


Step 2

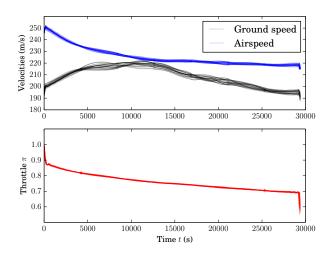


Optimización por miembro

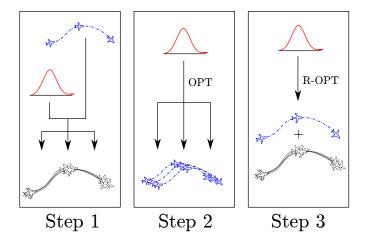
- A330 entre París y Nueva York a FL360
- 1 de marzo, 2015, 6 horas de lead time, ensemble PEARP
- Fase de crucero



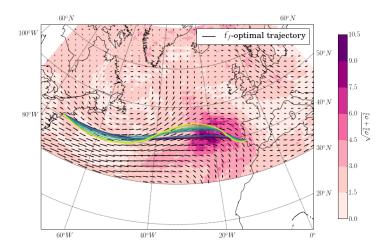
París - NY



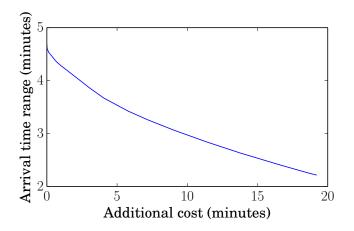
NY - París


Optimización miembro a miembro

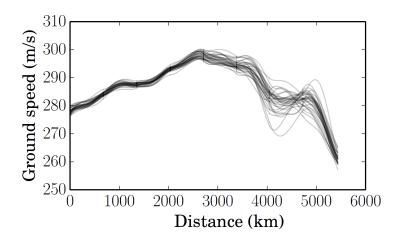
Evolución de los estados

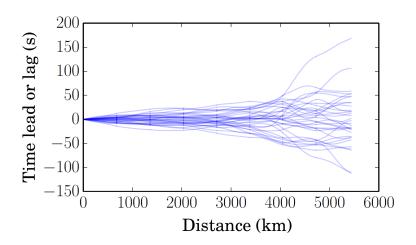


Planificación robusta



Planificación robusta




Trade-off predictabilidad - eficiencia

Velocidad respecto al suelo

Retraso o adelanto temporal

Table of contents

- Introducción
 - ATM: pasado y futuro
 - Incertidumbre en TBO
- Metodología
 - Control óptimo
 - EPS
 - Optimización miembro a miembro
 - Optimización robusta
- Python
 - Librerías
- 4 Conclusiones
 - Comentarios finales

Lectura y procesado de datos

- import numpy
- import scipy
- import xml.etree.ElementTree
- import pygrib
- import ecmwfapi

Python •00

Lectura y procesado de datos

- import numpy
- import scipy
- import xml.etree.ElementTree
- import pygrib
- import ecmwfapi

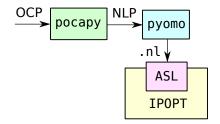
Python •00

•00

Lectura y procesado de datos

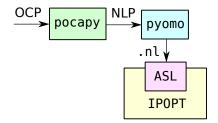
- import numpy
- import scipy
- import xml.etree.ElementTree
- import pygrib
- import ecmwfapi

Lectura y procesado de datos


- import numpy
- import scipy
- import xml.etree.ElementTree
- import pygrib
- import ecmwfapi

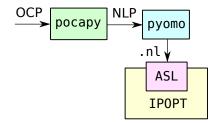
Python •00

Python 000


Optimización

- ipopt

Optimización


- ipopt
- import pyomo

Python 000

Optimización

- ipopt
- import pyomo
- import pocapy

Python 000

Librerías

Visualización

- import matplotlib.pyplot
- from mpl_toolkits.basemap import Basemap
- import seaborn

Visualización

- import matplotlib.pyplot
- from mpl_toolkits.basemap import Basemap
- import seaborn

Visualización

- import matplotlib.pyplot
- from mpl_toolkits.basemap import Basemap
- import seaborn

Table of contents

- Introducción
 - ATM: pasado y futuro
 - Incertidumbre en TBO
- 2 Metodología
 - Control óptimo
 - EPS
 - Optimización miembro a miembro
 - Optimización robusta
- 3 Python
 - Librerías
- Conclusiones
 - Comentarios finales

Conclusiones

- Python: experiencia muy positiva
- Versatilidad para tratar con todo tipo de datos y problemas matemáticos
- ¡Notebooks!
- ¿Rendimiento?

Proyectos futuros

- Estudio sistemático de beneficios
- Comparar Pyomo con CasADi y Theand
- ¿Algoritmos genéticos + PyCUDA?

Proyectos futuros

- Estudio sistemático de beneficios
- Comparar Pyomo con CasADi y Theano
- ¿Algoritmos genéticos + PyCUDA?

Proyectos futuros

- Estudio sistemático de beneficios
- Comparar Pyomo con CasADi y Theano
- ¿Algoritmos genéticos + PyCUDA?

Para saber más

 OptMet: Analysis and optimization of aircraft trajectories under the effects of meteorological uncertainties.

```
https://optmet.wordpress.com/
```

 TBO-Met: Meteorological Uncertainty Management for Trajectory-Based Operations.

```
https://tbomet-sesar2020.com/
```

Optimización de trayectorias bajo incertidumbre con Python

Daniel González Arribas

Department of Bioengineering and Aerospace Engineering
Universidad Carlos III de Madrid

Python Madrid Meetup - Junio 2016

